Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.603
Filtrar
1.
Biochem J ; 481(7): 515-545, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38572758

RESUMO

Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.


Assuntos
Peptídeo Hidrolases , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitinação , Processamento de Proteína Pós-Traducional , Ubiquitinas/genética , Ubiquitinas/metabolismo , Dano ao DNA , Endopeptidases/metabolismo , Instabilidade Genômica
2.
Cell Mol Life Sci ; 81(1): 148, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509419

RESUMO

Propagation of viruses requires interaction with host factors in infected cells and repression of innate immune responses triggered by the host viral sensors. Cytosolic DNA sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) is a major component of the antiviral response to DNA viruses, also known to play a relevant role in response to infection by RNA viruses, including foot-and-mouth disease virus (FMDV). Here, we provide supporting evidence of cGAS degradation in swine cells during FMDV infection and show that the two virally encoded proteases, Leader (Lpro) and 3Cpro, target cGAS for cleavage to dampen the cGAS/STING-dependent antiviral response. The specific target sequence sites on swine cGAS were identified as Q140/T141 for the FMDV 3Cpro and the KVKNNLKRQ motif at residues 322-330 for Lpro. Treatment of swine cells with inhibitors of the cGAS/STING pathway or depletion of cGAS promoted viral infection, while overexpression of a mutant cGAS defective for cGAMP synthesis, unlike wild type cGAS, failed to reduce FMDV replication. Our findings reveal a new mechanism of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, based on the redundant degradation of cGAS through the concomitant proteolytic activities of two proteases encoded by an RNA virus, further proving the key role of cGAS in restricting FMDV infection.


Assuntos
Vírus da Febre Aftosa , Animais , Suínos , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Imunidade Inata , Endopeptidases/genética , Endopeptidases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Antivirais/metabolismo
3.
Eur J Med Chem ; 268: 116275, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452725

RESUMO

USP2 and USP8 are crucial in the development and progression of breast cancer, primarily through the stabilization of protein substrates such as Her2 and ERα. The dual-target inhibitor ML364, targeting both USP2 and USP8, has garnered significant interest in recent research. In this study, we developed a series of ML364 derivatives using ligand-based drug design strategies. The standout compound, LLK203, demonstrated enhanced inhibitory activity, showing a 4-fold increase against USP2 and a 9-fold increase against USP8, compared to the parent molecule. In MCF-7 breast cancer cells, LLK203 effectively degraded key proteins involved in cancer progression and notably inhibited cell proliferation. Moreover, LLK203 exhibited potent in vivo efficacy in the 4T1 homograft model, while maintaining a low toxicity profile. These results underscore the potential of LLK203 as a promising dual-target inhibitor of USP2/USP8 for breast cancer treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Células MCF-7 , Proliferação de Células , Ubiquitina Tiolesterase , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/farmacologia
4.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474583

RESUMO

Tobacco etch virus protease (TEVp) is wildly exploited for various biotechnological applications. These applications take advantage of TEVp's ability to cleave specific substrate sequences to study protein function and interactions. A major limitation of this enzyme is its relatively slow catalytic rate. In this study, MD simulations were conducted on TEV enzymes and known highly active mutants (eTEV and uTEV3) to explore the relationship between mutation, conformation, and catalytic function. The results suggest that mutations distant from the active site can influence the substrate-binding pocket through interaction networks. MD analysis of eTEV demonstrates that, by stabilizing the orientation of the substrate at the catalytic site, mutations that appropriately enlarge the substrate-binding pocket will be beneficial for Kcat, enhancing the catalytic efficiency of the enzyme. On the contrary, mutations in uTEV3 reduced the flexibility of the active pocket and increased the hydrogen bonding between the substrate and enzyme, resulting in higher affinity. At the same time, the MD simulation demonstrates that mutations outside of the active site residues could affect the dynamic movement of the binding pocket by altering residue networks and communication pathways, thereby having a profound impact on reactivity. These findings not only provide a molecular mechanistic explanation for the excellent mutants, but also serve as a guiding framework for rational computational design.


Assuntos
Endopeptidases , Simulação de Dinâmica Molecular , Endopeptidases/metabolismo , Biotecnologia , Mutação
5.
Int J Biol Macromol ; 265(Pt 2): 131066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521339

RESUMO

Human rhinovirus 3C protease (HRV 3CP) has a high specificity against the substrate of LEVLFQ↓G at P1' site, which plays an important role in biotechnology and academia as a fusion tag removal tool. However, a non-ignorable limitation is that an extra residue of Gly would remain at the N terminus of the recombinant target protein after cleavage with HRV 3CP, thus potentially causing protein mis-functionality or immunogenicity. Here, we developed a combinatorial strategy by integrating structure-guided library design and high-throughput screening of eYESS approach for HRV 3CP engineering to expand its P1' specificity. Finally, a C3 variant was obtained, exhibiting a broad substrate P1' specificity to recognize 20 different amino acids with the highest activity against LEVLFQ↓M (kcat/KM = 3.72 ± 0.04 mM-1∙s-1). Further biochemical and NGS-mediated substrate profiling analysis showed that C3 variant still kept its substrate stringency at P1 site and good residue tolerance at P2' site, but with an expanded P1' specificity. Structural simulation of C3 indicated a reconstructed S1' binding pocket as well as new interactions with the substrates. Overall, our studies here prompt not only the practical applications and understanding of substrate recognition mechanisms of HRV 3CP, also provide new tools for other enzyme engineering.


Assuntos
Endopeptidases , Peptídeo Hidrolases , Humanos , Peptídeo Hidrolases/metabolismo , Frequência Cardíaca , Endopeptidases/metabolismo , Aminoácidos , Proteases Virais 3C/metabolismo , Proteínas Recombinantes/química , Especificidade por Substrato
6.
Food Funct ; 15(7): 3722-3730, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38489157

RESUMO

Bioactive peptides have been considered potential components for the future functional foods and nutraceuticals generation. The enzymatic method of hydrolysis has several advantages compared to those of chemical hydrolysis and fermentation. Despite this fact, the high cost of natural and commercial proteases limits the commercialization of hydrolysates in the food and pharmacological industries. For this reason, more efficient and economically interesting techniques, such as the immobilisation of the enzyme, are gaining attention. In the present study, a new protein hydrolysate from Lupinus angustifolius was generated by enzymatic hydrolysis through the immobilisation of the enzyme alcalase® (imLPH). After the chemical and nutritional characterization of the imLPH, an in vivo study was carried out in order to evaluate the effect of 12 weeks treatment with imLPH on the plasmatic lipid profile and antioxidant status in western-diet-fed apolipoprotein E knockout mice. The immobilisation of alcalase® generated an imLPH with a degree of hydrolysis of 29.71 ± 2.11%. The imLPH was mainly composed of protein (82.50 ± 0.88%) with a high content of glycine/glutamine, arginine, and aspartic acid/asparagine. The imLPH-treatment reduced the amount of abdominal white adipose tissue, total plasma cholesterol, LDL-C, and triglycerides, as well as the cardiovascular risk indexes (CRI) -I, CRI-II, and atherogenic index of plasma. The imLPH-treated mice also showed an increase in the plasma antioxidant capacity. For the first time, this study demonstrates the beneficial in vivo effect of a lupin protein hydrolysate obtained with the alcalase® immobilised and points out this approach as a possible cost-effective solution at the expensive generation of the hydrolysate through the traditional batch conditions with soluble enzymes.


Assuntos
Lupinus , Hidrolisados de Proteína , Animais , Camundongos , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Antioxidantes/química , Lupinus/metabolismo , Subtilisinas/metabolismo , Endopeptidases/metabolismo , Hidrólise
7.
J Nucl Med ; 65(4): 527-532, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453362

RESUMO

Fibroblast activation protein (FAP) is a promising diagnostic and therapeutic target in various solid tumors. This study aimed to assess the diagnostic efficiency of 68Ga-labeled FAP inhibitor (FAPI)-04 PET/CT for detecting lymph node metastasis in non-small cell lung cancer (NSCLC) and to investigate the correlation between tumor 68Ga-FAPI-04 uptake and FAP expression. Methods: We retrospectively enrolled 136 participants with suspected or biopsy-confirmed NSCLC who underwent 68Ga-FAPI-04 PET/CT for initial staging. The diagnostic performance of 68Ga-FAPI-04 for the detection of NSCLC was evaluated. The final histopathology or typical imaging features were used as the reference standard. The SUVmax and SUVmean, 68Ga-FAPI-avid tumor volume (FTV), and total lesion FAP expression (TLF) were measured and calculated. FAP immunostaining of tissue specimens was performed. The correlation between 68Ga-FAPI-04 uptake and FAP expression was assessed using the Spearman correlation coefficient. Results: Ninety-one participants (median age, 65 y [interquartile range, 58-70 y]; 69 men) with NSCLC were finally analyzed. In lesion-based analysis, the diagnostic sensitivity and positive predictive value of 68Ga-FAPI-04 PET/CT for detection of the primary tumor were 96.70% (88/91) and 100% (88/88), respectively. In station-based analysis, the diagnostic sensitivity, specificity, and accuracy for the detection of lymph node metastasis were 72.00% (18/25), 93.10% (108/116), and 89.36% (126/141), respectively. Tumor 68Ga-FAPI-04 uptake (SUVmax, SUVmean, FTV, and TLF) correlated positively with FAP expression (r = 0.470, 0.477, 0.582, and 0.608, respectively; all P ≤ 0.001). The volume parameters FTV and TLF correlated strongly with FAP expression in 31 surgical specimens (r = 0.700 and 0.770, respectively; both P < 0.001). Conclusion: 68Ga-FAPI-04 PET/CT had excellent diagnostic efficiency for detecting lymph node metastasis, and 68Ga-FAPI-04 uptake showed a close association with FAP expression in participants with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ivermectina , Neoplasias Pulmonares , Quinolinas , Idoso , Humanos , Masculino , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Fibroblastos , Fluordesoxiglucose F18 , Radioisótopos de Gálio , Ivermectina/análogos & derivados , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Retrospectivos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo
8.
mBio ; 15(4): e0032524, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38426748

RESUMO

Gram-negative bacteria have a thin peptidoglycan layer between the cytoplasmic and outer membranes protecting the cell from osmotic challenges. Hydrolases of this structure are needed to cleave bonds to allow the newly synthesized peptidoglycan strands to be inserted by synthases. These enzymes need to be tightly regulated and their activities coordinated to prevent cell lysis. To better understand this process in Escherichia coli, we probed the genetic interactions of mrcA (encodes PBP1A) and mrcB (encodes PBP1B) with genes encoding peptidoglycan amidases and endopeptidases in envelope stress conditions. Our extensive genetic interaction network analysis revealed relatively few combinations of hydrolase gene deletions with reduced fitness in the absence of PBP1A or PBP1B, showing that none of the amidases or endopeptidases is strictly required for the functioning of one of the class A PBPs. This illustrates the robustness of the peptidoglycan growth mechanism. However, we discovered that the fitness of ∆mrcB cells is significantly reduced under high salt stress and in vitro activity assays suggest that this phenotype is caused by a reduced peptidoglycan synthesis activity of PBP1A at high salt concentration.IMPORTANCEEscherichia coli and many other bacteria have a surprisingly high number of peptidoglycan hydrolases. These enzymes function in concert with synthases to facilitate the expansion of the peptidoglycan sacculus under a range of growth and stress conditions. The synthases PBP1A and PBP1B both contribute to peptidoglycan expansion during cell division and growth. Our genetic interaction analysis revealed that these two penicillin-binding proteins (PBPs) do not need specific amidases, endopeptidases, or lytic transglycosylases for function. We show that PBP1A and PBP1B do not work equally well when cells encounter high salt stress and demonstrate that PBP1A alone cannot provide sufficient PG synthesis activity under this condition. These results show how the two class A PBPs and peptidoglycan hydrolases govern cell envelope integrity in E. coli in response to environmental challenges and particularly highlight the importance of PBP1B in maintaining cell fitness under high salt conditions.


Assuntos
Proteínas de Escherichia coli , Peptidoglicano Glicosiltransferase , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Parede Celular/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo
9.
J Med Virol ; 96(3): e29523, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483060

RESUMO

Tight control of the type I interferon (IFN) signaling pathway is critical for maintaining host innate immune responses, and the ubiquitination and deubiquitination of signaling molecules are essential for signal transduction. Deubiquitinase ubiquitin-specific protein 19 (USP19) is known to be involved in deubiquitinating Beclin1, TRAF3, and TRIF for downregulation of the type I IFN signaling. Here, we show that SIAH1, a cellular E3 ubiquitin ligase that is involved in multicellular pathway, is a potent positive regulator of virus-mediated type I IFN signaling that maintains homeostasis within the antiviral immune response by targeting USP19. In the early stages of virus infection, stabilized SIAH1 directly interacts with the USP19 and simultaneously mediates K27-linked ubiquitination of 489, 490, and 610 residues of USP19 for proteasomal degradation. Additionally, we found that USP19 specifically interacts with MAVS and deubiquitinates K63-linked ubiquitinated MAVS for negative regulation of type I IFN signaling. Ultimately, we identified that SIAH1-mediated degradation of USP19 reversed USP19-mediated deubiquitination of MAVS, Beclin1, TRAF3, and TRIF, resulting in the activation of antiviral immune responses. Taken together, these findings provide new insights into the molecular mechanism of USP19 and SIAH1, and suggest a critical role of SIAH1 in antiviral immune response and homeostasis.


Assuntos
Interferon Tipo I , Ubiquitina , Humanos , Ubiquitina/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Proteína Beclina-1 , Ubiquitinação , Imunidade Inata , Interferon Tipo I/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Endopeptidases/genética , Endopeptidases/metabolismo
10.
Biochem Biophys Res Commun ; 706: 149746, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461646

RESUMO

Polyglycine hydrolases are fungal effectors composed of an N-domain with unique sequence and structure and a C-domain that resembles ß-lactamases, with serine protease activity. These secreted fungal proteins cleave Gly-Gly bonds within a polyglycine sequence in corn ChitA chitinase. The polyglycine hydrolase N-domain (PND) function is unknown. In this manuscript we provide evidence that the PND does not directly participate in ChitA cleavage. In vitro analysis of site-directed mutants in conserved residues of the PND of polyglycine hydrolase Es-cmp did not specifically impair protease activity. Furthermore, in silico structural models of three ChitA-bound polyglycine hydrolases created by High Ambiguity Driven protein-protein DOCKing (HADDOCK) did not predict significant interactions between the PND and ChitA. Together these results suggest that the PND has another function. To determine what types of PND-containing proteins exist in nature we performed a computational analysis of Foldseek-identified PND-containing proteins. The analysis showed that proteins with PNDs are present throughout biology as either single domain proteins or fused to accessory domains that are diverse but are usually proteases or kinases.


Assuntos
Peptídeo Hidrolases , Peptídeos , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases/metabolismo , Proteólise
11.
Sci Adv ; 10(11): eadk2542, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489364

RESUMO

Stressed cells secret misfolded proteins lacking signaling sequence via an unconventional protein secretion (UcPS) pathway, but how misfolded proteins are targeted selectively in UcPS is unclear. Here, we report that misfolded UcPS clients are subject to modification by a ubiquitin-like protein named ubiquitin-fold modifier 1 (UFM1). Using α-synuclein (α-Syn) as a UcPS model, we show that mutating the UFMylation sites in α-Syn or genetic inhibition of the UFMylation system mitigates α-Syn secretion, whereas overexpression of UFBP1, a component of the endoplasmic reticulum-associated UFMylation ligase complex, augments α-Syn secretion in mammalian cells and in model organisms. UFM1 itself is cosecreted with α-Syn, and the serum UFM1 level correlates with that of α-Syn. Because UFM1 can be directly recognized by ubiquitin specific peptidase 19 (USP19), a previously established UcPS stimulator known to associate with several chaperoning activities, UFMylation might facilitate substrate engagement by USP19, allowing stringent and regulated selection of misfolded proteins for secretion and proteotoxic stress alleviation.


Assuntos
Retículo Endoplasmático , alfa-Sinucleína , Animais , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Transporte Proteico/fisiologia , Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo , Endopeptidases/metabolismo
12.
EMBO J ; 43(8): 1634-1652, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467832

RESUMO

During bacterial cell growth, hydrolases cleave peptide cross-links between strands of the peptidoglycan sacculus to allow new strand insertion. The Pseudomonas aeruginosa carboxyl-terminal processing protease (CTP) CtpA regulates some of these hydrolases by degrading them. CtpA assembles as an inactive hexamer composed of a trimer-of-dimers, but its lipoprotein binding partner LbcA activates CtpA by an unknown mechanism. Here, we report the cryo-EM structures of the CtpA-LbcA complex. LbcA has an N-terminal adaptor domain that binds to CtpA, and a C-terminal superhelical tetratricopeptide repeat domain. One LbcA molecule attaches to each of the three vertices of a CtpA hexamer. LbcA triggers relocation of the CtpA PDZ domain, remodeling of the substrate binding pocket, and realignment of the catalytic residues. Surprisingly, only one CtpA molecule in a CtpA dimer is activated upon LbcA binding. Also, a long loop from one CtpA dimer inserts into a neighboring dimer to facilitate the proteolytic activity. This work has revealed an activation mechanism for a bacterial CTP that is strikingly different from other CTPs that have been characterized structurally.


Assuntos
Endopeptidases , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Endopeptidases/metabolismo , Proteólise
13.
Eur J Med Chem ; 269: 116329, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508117

RESUMO

Cathepsin B (CTSB) is a key lysosomal protease that plays a crucial role in the development of cancer. This article elucidates the relationship between CTSB and cancer from the perspectives of its structure, function, and role in tumor growth, migration, invasion, metastasis, angiogenesis and autophagy. Further, we summarized the research progress of cancer treatment related drugs targeting CTSB, as well as the potential and advantages of Traditional Chinese medicine in treating tumors by regulating the expression of CTSB.


Assuntos
Catepsina B , Catepsina B/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Lisossomos/química , Lisossomos/metabolismo
14.
Microbiol Spectr ; 12(4): e0337223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38466127

RESUMO

Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Sorogrupo , Febre Aftosa/tratamento farmacológico , Febre Aftosa/prevenção & controle , Endopeptidases/metabolismo , Proteases Virais 3C , Antivirais/farmacologia
15.
New Phytol ; 242(2): 424-430, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38406992

RESUMO

Understanding the complexities of protein ubiquitination is crucial, as it plays a multifaceted role in controlling protein stability, activity, subcellular localization, and interaction, which are central to diverse biological processes. Deubiquitinases (DUBs) serve to reverse ubiquitination, but research progress in plant DUBs is noticeably limited. Among existing studies, UBIQUITIN-SPECIFIC PROTEASE 12 (UBP12) and UBP13 have garnered attention for their extensive role in diverse biological processes in plants. This review systematically summarizes the recent advancements in UBP12/13 studies, emphasizing their function, and their substrate specificity, their relationship with E3 ubiquitin ligases, and the similarities and differences with their mammalian orthologue, USP7. By unraveling the molecular mechanisms of UBP12/13, this review offers in-depth insights into the ubiquitin-proteasome system (UPS) in plants and aims to catalyze further explorations and comprehensive understanding in this field.


Assuntos
Endopeptidases , Complexo de Endopeptidases do Proteassoma , Animais , Endopeptidases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Enzimas Desubiquitinantes/metabolismo , Mamíferos
16.
Mol Biol Cell ; 35(4): ar55, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381561

RESUMO

The bacterial cell wall is a meshwork of crosslinked peptidoglycan strands, with a thickness of up to 50 nm in Firmicutes. Little is known about how proteins move through the cell wall to find sites of enzymatic activity. Cell wall synthesis for cell elongation involves the integration of new peptidoglycan strands by integral membrane proteins, as well as the degradation of existing strands by so-called autolysins, soluble proteins that are secreted through the cell membrane. Autolysins comprise different classes of proteases and glucanases and mostly contain cell-wall binding domains in addition to their catalytic domain. We have studied dynamics of Bacillus subtilis autolysins LytC, a major endopeptidase required for lateral cell wall growth, and LytF, a peptidase acting at the newly formed division site in order to achieve separation of daughter cells. We show that both proteins, fused to moxVenus are present as three distinct populations of different diffusion constants. The fastest population is compatible with free diffusion in a crowded liquid environment, that is similar to that of cytosolic enzymes, likely reflecting autolysins diffusing through the periplasm. The medium mobile fraction can be explained by constrained motion through a polymeric substance, indicating mobility of autolysins through the wall similar to that of DNA-binding proteins within the nucleoid. The slow-mobile fraction are most likely autolysins bound to their specific substrate sites. We show that LytF is more static during exponential phase, while LytC appears to be more active during the transition to stationary phase. Both autolysins became more static in backgrounds lacking redundant other autolysins, suggesting stochastic competition for binding sites. On the other hand, lack of inhibitor IseA or autolysin CwlS lead to an altered preference for polar localization of LytF within the cell wall, revealing that inhibitors and autolysins also affect each other's pattern of localization, in addition to their activity.


Assuntos
Proteínas de Transporte , N-Acetil-Muramil-L-Alanina Amidase , N-Acetil-Muramil-L-Alanina Amidase/análise , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas de Transporte/metabolismo , Bacillus subtilis/metabolismo , Peptidoglicano/análise , Peptidoglicano/metabolismo , Parede Celular/metabolismo , Endopeptidases/metabolismo , Proteínas de Bactérias/metabolismo
17.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38305737

RESUMO

Tight control over transcription factor activity is necessary for a sensible balance between cellular proliferation and differentiation in the embryo and during tissue homeostasis by adult stem cells, but mechanistic details have remained incomplete. The homeodomain transcription factor MEIS2 is an important regulator of neurogenesis in the ventricular-subventricular zone (V-SVZ) adult stem cell niche in mice. We here identify MEIS2 as direct target of the intracellular protease calpain-2 (composed of the catalytic subunit CAPN2 and the regulatory subunit CAPNS1). Phosphorylation at conserved serine and/or threonine residues, or dimerization with PBX1, reduced the sensitivity of MEIS2 towards cleavage by calpain-2. In the adult V-SVZ, calpain-2 activity is high in stem and progenitor cells, but rapidly declines during neuronal differentiation, which is accompanied by increased stability of MEIS2 full-length protein. In accordance with this, blocking calpain-2 activity in stem and progenitor cells, or overexpression of a cleavage-insensitive form of MEIS2, increased the production of neurons, whereas overexpression of a catalytically active CAPN2 reduced it. Collectively, our results support a key role for calpain-2 in controlling the output of adult V-SVZ neural stem and progenitor cells through cleavage of the neuronal fate determinant MEIS2.


Assuntos
Células-Tronco Neurais , Fatores de Transcrição , Animais , Camundongos , Calpaína/genética , Calpaína/metabolismo , Diferenciação Celular , Proliferação de Células , Endopeptidases/metabolismo , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Peptídeo Hidrolases/metabolismo , Fatores de Transcrição/metabolismo
18.
PLoS Genet ; 20(2): e1011161, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422114

RESUMO

Peptidoglycan (PG) is a protective sac-like exoskeleton present in most bacterial cell walls. It is a large, covalently crosslinked mesh-like polymer made up of many glycan strands cross-bridged to each other by short peptide chains. Because PG forms a continuous mesh around the bacterial cytoplasmic membrane, opening the mesh is critical to generate space for the incorporation of new material during its expansion. In Escherichia coli, the 'space-making activity' is known to be achieved by cleavage of crosslinks between the glycan strands by a set of redundant PG endopeptidases whose absence leads to rapid lysis and cell death. Here, we demonstrate a hitherto unknown role of glycan strand cleavage in cell wall expansion in E. coli. We find that overexpression of a membrane-bound lytic transglycosylase, MltD that cuts the glycan polymers of the PG sacculus rescues the cell lysis caused by the absence of essential crosslink-specific endopeptidases, MepS, MepM and MepH. We find that cellular MltD levels are stringently controlled by two independent regulatory pathways; at the step of post-translational stability by a periplasmic adaptor-protease complex, NlpI-Prc, and post-transcriptionally by RpoS, a stationary-phase specific sigma factor. Further detailed genetic and biochemical analysis implicated a role for MltD in cleaving the nascent uncrosslinked glycan strands generated during the expansion of PG. Overall, our results show that the combined activity of PG endopeptidases and lytic transglycosylases is necessary for successful expansion of the cell wall during growth of a bacterium.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Proteínas de Escherichia coli/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Parede Celular/metabolismo , Bactérias/metabolismo , Lipoproteínas/metabolismo
19.
Cell Signal ; 117: 111092, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331013

RESUMO

SUMO-specific protease 3 (SENP3) participates in the removal of SUMOylation and maintains the balance of the SUMO system, which ensures normal functioning of substrates and cellular activities. In the present study, we found that SENP3 expression was significantly reduced in ox-LDL-stimulated macrophages. SENP3 overexpression suppressed and SENP3 knockdown promoted macrophage foam cell formation. Moreover, SENP3 inhibited cholesterol uptake, CD36 expression, and NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome activation in ox-LDL-stimulated macrophages. Ox-LDL-stimulated NLRP3 SUMOylation was reduced by SENP3. Blocking NLRP3 SUMOylation inhibited foam cell formation and NLRP3 inflammasome activation. Thus, this study revealed that SENP3 inhibits macrophage foam cell formation by deSUMOylating NLRP3 and regulating NLRP3 inflammasome activation, which may provide a potentially innovative approach to treatment of atherosclerosis.


Assuntos
Células Espumosas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Espumosas/metabolismo , Inflamassomos/metabolismo , Peptídeo Hidrolases/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Endopeptidases/metabolismo
20.
Int J Biol Macromol ; 262(Pt 2): 130136, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354926

RESUMO

Alphaviruses pose a significant threat to public health. Capsid protein encoded in the alphaviral genomes constitutes an interesting therapy target, as it also serves as a protease (CP). Remarkably, it undergoes autoproteolysis, leading to the generation of the C-terminal tryptophan that localizes to the active pocket, deactivating the enzyme. Lack of activity hampers the viral replication cycle, as the virus is not capable of producing the infectious progeny. We investigated the structure and function of the CP encoded in the genome of O'nyong'nyong virus (ONNV), which has instigated outbreaks in Africa. Our research provides a high-resolution crystal structure of the ONNV CP in its active state and evaluates the enzyme's activity. Furthermore, we demonstrated a dose-dependent reduction in ONNV CP proteolytic activity when exposed to indole, suggesting that tryptophan analogs may be a promising basis for developing small molecule inhibitors. It's noteworthy that the capsid protease plays an essential role in virus assembly, binding viral glycoproteins through its glycoprotein-binding hydrophobic pocket. We showed that non-aromatic cyclic compounds like dioxane disrupt this vital interaction. Our findings provide deeper insights into ONNV's biology, and we believe they will prove instrumental in guiding the development of antiviral strategies against arthritogenic alphaviruses.


Assuntos
Alphavirus , Proteínas do Capsídeo , Humanos , Proteínas do Capsídeo/química , Capsídeo/química , Capsídeo/metabolismo , Vírus O'nyong-nyong/metabolismo , Peptídeo Hidrolases/metabolismo , Ideação Suicida , Triptofano/metabolismo , Alphavirus/metabolismo , Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...